| Русский Русский | English English |
   
Главная
15 | 05 | 2024
10.14489/vkit.2023.09.рр.003-011

DOI: 10.14489/vkit.2023.09.рр.003-011

Вяткин С. И., Долговесов Б. С.
МЕТОД ИНТЕРАКТИВНОГО ПРОЕКТИРОВАНИЯ ФУНКЦИОНАЛЬНЫХ МЕХАНИЧЕСКИХ ОБЪЕКТОВ НА ОСНОВЕ СВОБОДНЫХ ФОРМ ДЛЯ БЫСТРОГО ПРОТОТИПИРОВАНИЯ
(с. 3-11)

Аннотация. Представлен метод интерактивного проектирования функциональных механических объектов. Трехмерные объекты представляют собой свободные формы и их объединения с применением функций возмущения. Метод позволяет настроить выбранную механическую конструкцию для формы, заданной пользователем. Настраиваются параметризованный механизм, механические и функциональные ограничения, определяющие функциональность и обеспечивающие допустимую конфигурацию. Разработан интерфейс, с помощью которого пользователь управляет размещением механических деталей и формой. Благодаря этому возможно проектирование различных вариантов дизайна формы и синтезирование механических компонентов, которые в дальнейшем могут быть изготовлены с использованием технологии быстрого прототипирования.

Ключевые слова:  свободная форма; функции возмущения; функциональные объекты; функциональная конструкция; механическая конструкция; быстрое прототипирование.

 

Vyatkin S. I., Dolgovesov B. S.
METHOD OF INTERACTIVE DESIGN OF FUNCTIONAL MECHANICAL OBJECTS BASED ON FREE FORMS FOR RAPID PROTOTYPING
(рр. 3-11)

Abstract. The method of interactive design of functional mechanical objects is presented. Three-dimensional objects are free forms and their combinations with the use of perturbation functions. The method allows you to customize the selected mechanical design for the shape specified by the user. The parameterized mechanism, mechanical and functional constraints that define the functionality and provide an acceptable configuration are configured. An interface has been developed through which the user controls the placement of mechanical parts and the shape. Thanks to this, the user can design various variants of the shape design and synthesize mechanical components that can later be manufactured using rapid prototyping technology. The purpose of the proposed work is to develop functional objects based on mechanisms. Functional mechanical objects are represented by the shape and appearance of the structure, mechanical details and functions describing the shapes and mechanical architectures. The method does not require modeling all the properties from scratch, but allows you to reuse the existing mechanical design. It is simply reconfigured to the form selected by the user. That is, so that the mechanical design remains the same, and the geometric shapes change. This is important for rapid prototyping, when it is necessary to create several variations of some design. As a result, an approach has been implemented that ensures the implementation of low-level mechanical constraints. An approach of spatial relationships between form, mechanism and high-level functional goals is also proposed. The effectiveness of the method was tested by reconfiguring several mechanical structures to various geometric shapes for further manufacturing of the resulting functional objects.

Keywords: Free form; Perturbation functions; Functional objects; Functional design; Mechanical design; Rapid prototyping.

Рус

С. И. Вяткин, Б. С. Долговесов (Институт автоматики и электрометрии Сибирского отделения Российской академии наук, Новосибирск, Россия) E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript  

Eng

S. I. Vyatkin, B. S. Dolgovesov (Institute of Automation and Electrometry of the Siberian Branch of the Russian Academy of Sciences, Novosibirsk, Russia) E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript  

Рус

1. Jung J. Y., Sul I. H., Chee S. Automatic Segmentation and 3D-Printing of A-shaped Manikins using a Bounding Box and Body-feature Points // Fashion and Textiles. 2021. V. 8(1). P. 1–21. DOI:10.1186/s40691-021-00255-8
2. Oh Y., Ko H., Sprock T., Bernstein W. Z. Part Decomposition and Evaluation Based on Standard Design Guidelines for Additive Manufacturability and Assemblability // Project: Assembly-based Design for Additive Manufacturing, V. 37. November 2020, P. 1–23. DOI:10.1016/j.addma.2020.101702
3. Yi B., Saitou K. Multi component topology optimization of functionally graded lattice structures with bulk solid interfaces (MTO-L) // Project: Topology optimization of lattice structure. International Journal for Numerical Methods in Engineering. 2021. V. 122(16). P. 1–87. DOI:10.1002/nme.6700
4. Ghiasian S. E., Jaiswal P., Rai R., Lewis K. A Design Modification System for Additive Manufacturing: Towards Feasible Geometry Development // Conference: ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference. 18–21 August 2019. Anaheim, California, USA. V. 2A: 45th Design Automation Conference. P. 1–12. DOI:10.1115/DETC2019-97840
5. Fang G., Zhang T., Zhong S., Chen X. Reinforced FDM: multi-axis filament alignment with controlled anisotropic strength" // ACM Transactions on Graphics. 2020. V. 39(6) P. 1–15. DOI:10.1145/3414685.3417834
6. Abdullah M., Sommerfeld R., Seidel L., Noack J. Roadkill: Nesting Laser-Cut Objects for Fast Assembly // Conference: UIST '21: The 34th Annual ACM Symposium on User Interface Software and Technology, 10–14 October 2021. P. 1–20. DOI:10.1145/3472749.3474799
7. Nagasawa K., Yoshii J., Yamamoto S. Prediction of the layered ink layout for 3D-printers considering a desired skin color and line spread function // Optical Review. 08 July 2021. V. 28(10). Is. 4. P. 449–461. DOI:10.1007/s10043-021-00679-z
8. Yang W., Calius E., Huang L. Artificial Evolution and Design for Multi-Material Additive Manufacturing // 3D-Printing and Additive Manufacturing. 2020. V. 7(6). P. 326–337. DOI:10.1089/3dp.2020.0114
9. Leimer K., Musialski P. Reduced-Order Simulation of Flexible Meta-Materials // Conference: Symposium on Computational Fabrication (SCF '20).5–6 November 2020, USA. P. 1–11. DOI:10.1145/3424630.3425411
10. Pietroni N., Bickel B., Malomo L., Cignoni P. State of the art on stylized fabrication // Computer Graphics Forum. 2018. V. 37(2). P. 1–24. DOI:10.1111/cgf.13327
11. Liu W., Tan R., Cao G., Yu F. Creative design through knowledge clustering and case-based reasoning // Engineering with Computers. 2020. V. 36(2). P. 527–541. DOI:10.1007/s00366-019-00712-5
12. Braun P., Sliwinski M., Hinckeldeyn J., Kreutzfeldt J. Challenges of CAD conversion to 3D development environments with respect to kinematic dependencies // Conference on Simulation and Modelling (SIMS 2020). 22–24 September 2020. Finland, March 2021. P. 215–221. DOI:10.3384/ecp20176215
13. Вяткин С. И., Долговесов Б. С. Методы интерактивного моделирования и визуализации функционально заданных объектов для 3D-Web приложений // Автометрия. 2022. Т.58, № 1. С. 111–118. DOI: 10.15372/AUT20220112
14. Вяткин С. И., Долговесов Б. С. Функционально заданные модели для аддитивного производства // Исследования. Инновации. Практика. 2022. № 4(4). С. 16–25. DOI: 10.18411/iip -08-2022-04
15. Вяткин С. И., Долговесов Б. С. Метод сжатия геометрических данных с применением функций возмущения // Автометрия. 2018. Т. 54, № 4. С. 18–25. DOI: 10.15372/AUT20180403

Eng

1. Jung J. Y., Sul I. H., Chee S. (2021). Automatic Segmentation and 3D-Printing of A-shaped Manikins using a Bounding Box and Body-feature Points. Fashion and Textiles, 8(1), 1 – 21. DOI:10.1186/s40691-021-00255-8
2. Oh Y., Ko H., Sprock T., Bernstein W. Z. (2020). Part Decomposition and Evaluation Based on Standard Design Guidelines for Additive Manufacturability and Assemblability. Project: Assembly-based Design for Additive Manufacturing, 37, 1 – 23. DOI: 10.1016/j.addma.2020.101702
3. Yi B., Saitou K. (2021). Multi component topology optimization of functionally graded lattice structures with bulk solid interfaces (MTO-L). Project: Topology optimization of lattice structure. International Journal for Numerical Methods in Engineering, 122(16), 1 – 87. DOI:10.1002/nme.6700
4. Ghiasian S. E., Jaiswal P., Rai R., Lewis K. (2019). A Design Modification System for Additive Manufacturing: Towards Feasible Geometry Development. Conference: ASME 2019 International Design Engineering Technical Conferences and Computers and Information in Engineering Conference, 2A: 45th Design Automation Conference, 1 – 12. Anaheim. DOI: 10.1115/DETC2019-97840
5. Fang G., Zhang T., Zhong S., Chen X. (2020). Reinforced FDM: multi-axis filament alignment with controlled anisotropic strength". ACM Transactions on Graphics, 39(6), 1 – 15. DOI: 10.1145/3414685.3417834
6. Abdullah M., Sommerfeld R., Seidel L., Noack J. (2021). Roadkill: Nesting Laser-Cut Objects for Fast Assembly. Conference: UIST '21: The 34th Annual ACM Symposium on User Interface Software and Technology, 1 – 20. DOI: 10.1145/3472749.3474799
7. Nagasawa K., Yoshii J., Yamamoto S. (2021). Prediction of the layered ink layout for 3D-printers considering a desired skin color and line spread function. Optical Review, 28, 10(4), 449 – 461. DOI: 10.1007/s10043-021-00679-z
8. Yang W., Calius E., Huang L. (2020). Artificial Evolution and Design for Multi-Material Additive Manufacturing. 3D-Printing and Additive Manufacturing, 7(6), 326 – 337. DOI: 10.1089/3dp.2020.0114
9. Leimer K., Musialski P. (2020). Reduced-Order Simulation of Flexible Meta-Materials. Conference: Symposium on Computational Fabrication, (SCF '20), 1 – 11. DOI: 10.1145/3424630.3425411
10. Pietroni N., Bickel B., Malomo L., Cignoni P. (2018). State of the art on stylized fabrication. Computer Graphics Forum, 37(2), 1 – 24. DOI: 10.1111/cgf.13327
11. Liu W., Tan R., Cao G., Yu F. (2020). Creative design through knowledge clustering and case-based reasoning, Springer. Engineering with Computers, 36(2), 527 – 541. DOI: 10.1007/s00366-019-00712-5
12. Braun P., Sliwinski M., Hinckeldeyn J., Kreutzfeldt J. (2021). Challenges of CAD conversion to 3D development environments with respect to kinematic dependencies. Conference on Simulation and Modelling (SIMS 2020), 215 – 221. DOI: 10.3384/ecp20176215
13. Vyatkin S. I., Dolgovesov B. S. (2022). Methods for Interactive Modeling and Visualization of Functionally Specified Objects for 3D Web Applications. Avtometriya, 58, (1), 111 – 118. [in Russian language] DOI: 10.15372/AUT20220112
14. Vyatkin S. I., Dolgovesov B. S. (2022). Functionally Defined Models for Additive Manufacturing. Issledovaniya. Innovatsii. Praktika, 4(4), 16 – 25. [in Russian language] DOI: 10.18411/iip -08-2022-04
15. Vyatkin S. I., Dolgovesov B. S. (2018). Geometric data compression method using perturbation functions. Avtometriya, 54(4), 18 – 25. [in Russian language] DOI: 10.15372/AUT20180403

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 500 руб. (в том числе НДС 20%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/vkit.2023.09.рр.003-011

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 500 rubles. (including VAT 20%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/vkit.2023.09.рр.003-011

and fill out the  form  

 

.

 

 

 
Баннер
Баннер
Rambler's Top100 Яндекс цитирования