| Русский Русский | English English |
   
Главная Архив номеров
31 | 10 | 2020
10.14489/vkit.2014.06.pp.025-033

DOI: 10.14489/vkit.2014.06.pp.025-033

Май В. П.
МОДЕЛИРОВАНИЕ ПОВЕРХНОСТНОГО ВОДОСТОКА
(с. 25-33)

Аннотация. Предложена и программно реализована пространственная математическая модель формирования речного стока, включающая склоновый водосбор с использованием цифровой модели рельефа территории речного бассейна. Показана возможность практического применения предложенного подхода с помощью вычислительных экспериментов на реальных данных. Для повышения вычислительной эффективности реализованной программы выполнено распараллеливание расчетов на компьютерном кластере.

Ключевые слова: моделирование поверхностного водостока; вычислительная схема; алгоритм параллельных вычислений; динамическая балансировка загрузки кластера.

 

May V. P.
MODELING A SLOPE WATER RUNOFF
(pp. 25-33)

Abstract. Predict of intensive precipitation is quite topical, as it will help to conduct the necessary acts in the assumed flooded areas in proper time. The given work is devoted to developing computational scheme for spatial model of slope water runoff on locality relief with realization of parallel computations with the help of multiprocessing system. In the given work we suggested a model for forming runoff with accent on relief as one of the main factors. Numerical model of relief means the area of land presented as a grid with square cells in the nodes of which we preset the elevations above sea level. Usually Saint-Venant equation and its various applications are taken as a basis for water runoff modeling. In our problem information about depth and speed of water flow is more important than information about runoff volume. We performed calculations on a basis of data covering all territory of water runoff of the assumed flooded area without input river flows. In this case a free runoff is possible at all area boundaries, and this fact significantly simplifies the formula of boundary conditions. The chosen general form of leading equations allows use different forms of the law of conservation of impulse not modifying a structure of the law of conservation of mass. Under this approach the main solved question is digitization in time. That’s why first we consider digitization of leading equations in time, and then digitization in space. As in the given work only the slope runoff is considered, while breaking the modeled area up into square cells it is necessary and suffi-cient to save cell elevation above sea level and elevation of water column for every cell. To describe system dynamics at the cell boundary the average flows at time step are calculated, and the system passes to the next state by realizing in time (overflowing) the found flows. The shown scheme of water runoff is very capacious with respect to number of the necessary calculations, and taking into account the quest for maximal relief specification, time of calculations becomes too large. Because of this, to accelerate computational process we used computer cluster. The designed computational scheme of slope water runoff model and also an algorithm of its parallelizing were tested at small water header.

Keywords: Slope water header modeling; Computational scheme; Algorithm of parallel computations; Dynamic load balancing cluster.

Рус

В. П. Май (ФГБУН «Институт автоматики и процессов управления Дальневосточного отделения РАН», Владивосток) E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript  

Eng

V. P. May (Institute of Automation and Control Processes, Far Eastern Branch of Russian Academy of Sciences, Vladivostok) E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript

Рус


1. Система физико-математических моделей гид-рологических процессов и опыт ее применения к задачам формирования речного стока / Л. С. Кучмент и др. // Водные ресурсы. 1986. № 5. С. 24 – 36.
2. An Introduction to the European Hydrological System – System Hydrologique European. SHE. 1: History and Philosophy of a Physically-Based Distributed Modeling System / M. B. Abbott, J. C. Bathurst, J. A. Cunge et al. // J. Hydrol. 1986. V. 87. P. 45 – 59.
3. An Introduction to the European Hydrological System – System Hydrologique European. SHE. 2: Structure of a Physically-Based Distributed Modeling System / M. B. Abbott, J. C. Bathurst, J. A. Cunge et al. // J. Hydrol. 1986. V. 87. P. 60 – 79.
4. Светличный А. А., Светличная И. А. Про-странственное моделирование склонового стокообразо-вания // Водные ресурсы. 2001. Т. 28, № 4. С. 424 – 433.
5. Иваненко С. А., Корявов П. П., Милитеев А. Н. Современные вычислительные технологии для расчета динамики открытых потоков // Водные ресурсы. 2002. Т. 29, № 5. С. 564 – 577.
6. Wang J.-W., Liu R.-X. A Comparative Study of Finite Volume Methods on Unstructured Meshes for Simulations of 2D Shallow Water Wave Problems // Mathe-matics and Computers in Simulation. 2000. V. 53, № 3. P. 171 – 184.
7. Heniche M., Secretan Y., Boudreau P., Leclerc M. A Two-Dimensional Finite Element Drying-Wetting Shallow Water Model for Rivers and Estuaries // Advances in Water Resources. 2000. V. 23, Is. 4. P. 359 – 372.
8. Бобков В. А., Борисов Ю. С., Май В. П. Моде-лирование динамики водостока на рельефе местности // Информационные технологии и вычислительные систе-мы. 2005. № 2. С. 43 – 50.
9. Роуч П. Вычислительная гидродинамика: пер. с англ. М.: Мир, 1980. 616 с.
10. Voinov A., Fitz C., Costanza R. Surface Water Flow in Landscape Models: Everglades Case Study // Eco-logical Modelling. 1998. V. 108, № 1 – 3. P. 131 – 144.
11. Distributed Processing of a Regional Prediction Model / K. Johnson, J. Bauer, G. Riccardi, K. Droegemeier, M. Xue // Mon. Wea. Rev. 1994. V. 122. P. 2558 – 2572.
12. Yu Z. Application of Vector and Parallel Supercomputers to Ground-Water Flow Modeling // Computers & Geosciences. 1997. V. 23, № 9. P. 917 – 927.
13. Tran V. D., Hluchy L. Parallelizing Flood Models with MPI: Approaches and Experiences // International Conference on Computational Science ICCS’2004. 2004. Krakow, Poland, Springer-Verlag, SCI-Expanded Journal. P. 425 – 428.
14. Chalmers A. Parallel/Distributed Rendering Issues // Proc. SIGGRAPH’2002. Practical Parallel Rendering. 2002. P. 3 – 65.

Eng


1. Kuchment L. S., Demidov V. N., Motovilov Iu. G., Smakhtin V. Iu. (1986). The system of physical and mathe-matical models of hydrological processes and the experience of its application to the problems of formation of river dis-charge. Vodnye resursy, (5), pp. 24-36.
2. Abbott M. B., Bathurst J. C., Cunge J. A. et al. (1986). An introduction to the European hydrological system – system hydrologique European. SHE. 1: History and phi-losophy of a physically-based distributed modeling sys-tem. J. Hydrol, 87, pp. 45-59.
3. Abbott M. B., Bathurst J. C., Cunge J. A. et al. (1986). An introduction to the European hydrological system – system hydrologique European. SHE. 2: Structure of a physically-based distributed modeling system. J. Hydrol, 87, pp. 60-79.
4. Svetlichnyi A. A., Svetlichnaia I. A. (2001). Spatial modeling of slope outflow formation. Vodnye resursy, 28(4), pp. 424-433.
5. Ivanenko S. A., Koriavov P. P., Militeev A. N. (2002). Modern computational technologies for calculating the dynamics of open water flows. Vodnye resursy, 29(5), pp. 564-577.
6. Wang J.-W., Liu R.-X. A (2000). A comparative study of finite volume methods on unstructured meshes for simulations of 2D shallow water wave prob-lems. Mathematics and Computers in Simulation, 53(3), pp. 171-184.
7. Heniche M., Secretan Y., Boudreau P., Leclerc M. A. (2000). A two-dimensional finite element drying-wetting shallow water model for rivers and estuaries. Advances in Water Resources, 23(4), pp. 359-372.
8. Bobkov V. A., Borisov Iu. S., Mai V. P. (2005). Simulation of dynamics of a drain on the terrain. Infor-matsionnye tekhnologii i vychislitel'nye sistemy, (2), pp. 43-50.
10. Rouch P. (1980). Computational fluid dynamics. Moscow: Mir.
10. Voinov A., Fitz C., Costanza R. (1998). Surface water flow in landscape models: Everglades case study. Ecological Modelling, 108(1-3), pp. 131-144.
11. Johnson K., Bauer J., Riccardi G., Droegemeier K., Xue M. (1994). Distributed processing of a regional predic-tion model. Mon. Wea. Rev., 122, pp. 2558 – 2572.
12. Yu Z. (1997). Application of vector and parallel supercomputers to ground-water flow modeling. Computers & Geosciences, 23(9), pp. 917-927.
13. Tran V. D., Hluchy L. (2004). Parallelizing flood models with MPI: approaches and experiences. International Conference on Computational Science ICCS’2004. Krakow, Poland, Springer-Verlag, SCI-Expanded Journal, pp. 425 – 428. doi: 10.1007/978-3-540-24685-5_57
14. Chalmers A. (2002). Parallel distributed rendering issues. Proc. SIGGRAPH’2002. Practical Parallel Rendering, pp. 3-65.

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 250 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа статьи заполните форму:

{jform=1,doi=10.14489/vkit.2014.06.pp.025-033}

.

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 250 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please fill out the form below:

{jform=2,doi=10.14489/vkit.2014.06.pp.025-033}

 

 

 

 

 

.

.

 

 
Поиск
Баннер
Журнал КОНТРОЛЬ. ДИАГНОСТИКА
Баннер
Баннер
Баннер
Rambler's Top100 Яндекс цитирования