| Русский Русский | English English |
   
Главная Архив номеров
27 | 10 | 2020
10.14489/vkit.2019.05.pp.003-009

DOI: 10.14489/vkit.2019.05.pp.003-009

Май В. П., Шупикова А. А.
МОДЕЛИРОВАНИЕ ПОЛЕЙ СКОРОСТЕЙ ОКЕАНИЧЕСКИХ ТЕЧЕНИЙ
(с. 3-9)

Аннотация. Рассматривается новая стримлетная модель, предназначенная для объективного анализа полей скоростей океанических течений. В основе данной параметрической модели лежит когерентность синоптических объектов. Ассимиляция измерений скорости состоит в подборе оптимальных параметров функции с помощью хорошо известного алгоритма Нелдера–Мида. Стримлетная модель универсальна и позволяет функционально объединить разные синоптические объекты, такие как струйные течения и вихри, которые можно интерпретировать как замкнутые струи. Модель применена к синоптическим объектам различной природы и масштаба, включая как поверхностные и подповерхностные бароклинные, так и глубинные баротропные океанические течения.

Ключевые слова:  струйные течения; синоптические объекты; объектное моделирование; завихренность; поверхность Лэмба.

 

May V. P., Shupikova A. A.
MODELING VELOCITY FIELDS OF THE OCEANIC CURRENTS
(pp. 3-9)

Abstract. Ocean currents velocity field analysis is one of the most important problem of applied oceanology. Unfortunately, its reconstruction using temperature and salinity fields on a basis of geostrophical balance, is not always possible. Therefore, some currents are considered as feature modeling. Velocity models have particular role for analysis of velocity fields. The advantage of feature models in comparison with point methods of objective analysis of oceanographic fields is their integral character, which enables us to solve this very important problem effectively. Perspective of feature models in initialization tasks arises because of models ability to remove small scale perturbation. It gives us an opportunity to use them in the modern eddy resolving numerical models. Even they are simple analytical functions, with the help of them we may construct the complicated fields. Stream coordinates are important property of feature models, which sufficiently improve gradients picture of oceanographic fields. The aim of this article is to verify the new streamlet model, which can be used for objective analysis of the three-dimensional velocity structure of ocean currents. It is a simple parametric model for coherent synoptic object such as eddies and jets. Velocity data assimilation consists in approximation of the optimal parameters by using the wellknown Nelder-Mead algorithm. Unfortunately, object modeling is not universal, and the same is true for velocity feature models. The proposed model is universal and allows us to combine functionally different synoptic objects such as jets and eddies, which can be interpreted as the closed jets. Streamlet model sets one-to-one correspondence between 3D-velocity and vorticity fields. This model is based on graphical representation of synoptic objects in the ocean. Each object has its own stream coordinates, it moves with them and allows to use its coherent characteristics of ocean flows. Streamlet model can be applied to synoptic objects of different type and scale, including both surface, subsurface baroclinic and deep barotropic ocean currents.

Keywords: Stream coordinates; Synoptic objects; Object modeling; Vorticity; Lamb surface.

Рус

В. П. Май, А. А. Шупикова (Институт автоматики и процессов управления Дальневосточного отделения РАН, Владивосток, Россия) E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript  

Eng

V. P. May, A. A. Shupikova (Institute of Automation and Control Processes, Far Eastern Branch of Russian Academy of Sciences, Vladivostok, Russia) E-mail: Этот e-mail адрес защищен от спам-ботов, для его просмотра у Вас должен быть включен Javascript  

Рус

1. Бондаренко А. Л. Крупномасштабные течения и долгопериодные волны Мирового океана [Электронный ресурс]. М., 2012. С. 35 – 39. URL: http://meteoweb.ru/articles/mono_bondarenko.pdf (дата обращения: 01.04.2018).
2. Halkin D., Rossby T. The Structure and Transport of the Gulf Stream at 73В°W // J. of Phys. Oceanography. 1985. V. 15. P. 1439 – 1452.
3. Leber G. M., Beal L. M. Evidence that Agulhas Current Transport is Maintained During a Meander // J. of Geophys. Research: Ocean. June 2014. V. 119. P. 3806 – 3817. doi: 10.1002/2014jc009802
4. Eddies in the Canada Basin, Arctic Ocean, Observed from Ice-tethered Profilers / M.-L. Timmermans et al. // J. of Phys. Oceanography. 2008. V. 38. P. 133 – 145. doi: 10.1175/2007JPO3782.1
5. Gangopadhyay A., Robinson A. R. Feature-Оriented Regional Modeling of Oceanic Fronts // Dynamics of Atmospheres and Oceans. 2002. V. 36(1-3). P. 201 – 232.
6. Schmidt A., Gangopadhyay A. An Operational Ocean Circulation Prediction System for the Western North Atlantic: Hindcasting During July – September of 2006 // Continental Shelf Research. 2013. V. 63. P. 177 – 192. doi: 10.1016/j.csr.2012.08.017 7. Шупикова А. А., Казанский А. В. Верификация стримлетной модели на основе натурных измерений скорости течений в океане // Подводные исследования и робототехника. 2012. № 2(14). С. 63 – 68.
8. Kazansky A. V., Shupikova A. A. On the Velocity Field Structure of Jet Streams and Eddies in the Ocean // Doklady Earth Scinces. 2010. V. 431, Is. 2. P. 528 – 532.
9. Foppert A., Donohue K. A., Watts D. R. The Polar Front in Drake Passage: A Composite-mean Stream-coordinate View // J. of Geophys. Research: Oceans. 2016. V. 121(3). P. 1771 – 1788. doi: 10.1002/ 2015JC011333.
10. Meinen C. S., Luther D. S. Comparison of Methods of Estimating Mean Synoptic Current Structure in “Stream coordinates” Reference Frames with an Example from the Antarctic Circumpolar Current // Deep Sea Research. Part 1: Oceanographic Research Papers. 2003. V. 50. Is. 2. P. 201 – 220. doi: 10.1016/S0967-0637(02)00168-1
11. Sposito G. Topological Groundwater Hydrodynamics // Adv. Water Resources. 2001. V. 24, Is. 7. P. 793 – 801. doi: 10.1016/S0309-1708(00)00077-4
12. Uchida H., Imawaki S., Hu J.-H. Comparisons of Kuroshio Surface Velocities Derived from Satellite Altimeter and Drifting Buoy Data // J. of Oceanography. 1998. V. 54, Is. 1. P. 115 – 122.
13. Pedlosky J. Ocean Circulation Theory. Berlin: Springer–Verlag, 1996. 450 p.
14. KAIYO KY13-09 Cruise Data / Data and Sample Research System for Whole Cruise Information in JAMSTEC. URL: http://www.godac.jamstec.go. jp/darwin/cruise/kaiyo/ky13-09/e (дата обращения: 17.04.2019).
15. MIRAI MR14-06 Leg2 Cruise Data / Data and Sample Research System for Whole Cruise Information in JAMSTEC. URL: http://www.godac. jamstec.go.jp/darwin/cruise/mirai/mr14-06_leg2/e (дата обращения: 17.04.2019).
16. Krishfield R. A., Plueddemann A. J., Honjo S. Technical Report WHOI-2002-09 // Woods Hole Oceanographic Institution, 2002. URL: http://www.whoi. edu/page.do?pid=31895 (дата обращения: 01.04.2019).
17. Drifting Buoys Make Discoveries About Interactive Processes in the Arctic Ocean / S. Honjo et al. // EOS Transcations. AGU. 1995. V. 76, No. 21 P. 209-219.

Eng

1. Bondarenko A. L. (2012). Large-scale currents and long-term waves of the World Ocean, pp. 35-39. Moscow. Available at: http://meteoweb.ru/articles/ mono_bondarenko.pdf (Accessed: 01.04.2018). [in Russian language]
2. Halkin D., Rossby T. (1985). The Structure and Transport of the Gulf Stream at 73В°W. Journal of Physical Oceanography, Vol. 15, pp. 1439-1452.
3. Leber G. M., Beal L. M. (2014). Evidence that Agulhas Current Transport is Maintained During a Meander. Journal of Geophysical Research: Oceans, Vol. 119, pp. 3806-3817. doi: 10.1002/2014jc009802
4. Timmermans M.-L. et al. (2008). Eddies in the Canada Basin, Arctic Ocean, Observed from Ice-tethered Profilers. Journal of Geophysical Research: Oceans, Vol. 38, pp. 133-145. doi.org/10.1175/2007JPO3782.1
5. Gangopadhyay A., Robinson A. R. (2002). Feature-oriented Regional Modeling of Oceanic Fronts. Dynamics of Atmospheres and Oceans, 36(1-3), pp. 201-232.
6. Schmidt A., Gangopadhyay A. (2013). An Operational Ocean Circulation Prediction System for the Western North Atlantic: Hindcasting During July – September of 2006. Continental Shelf Research, Vol. 63, pp. 177-192. DOI: doi.org/10.1016/j.csr.2012.08.017
7. Shupikova A. A., Kazansky A. V. (2012). Verification of the streamlet model based on field measurements of the velocity of currents in the ocean. Podvodnye issledovaniya i robototekhnika, 14(2), pp. 63-68. [in Russian language]
8. Kazansky A. V., Shupikova A. A. (2010). On the Velocity Field Structure of Jet Streams and Eddies in the Ocean. Doklady Earth Scinces, 431(2), pp. 528-532.
9. Foppert A., Donohue K. A., Watts D. R. (2016). The Polar Front in Drake Passage: A composite-mean stream-coordinate view. Journal of Geophysical Research: Oceans, 121(3), pp. 1771-1788. doi: 10.1002/ 2015JC011333.
10. Meinen C. S., Luther D. S. (2003). Comparison of Methods of Estimating Mean Synoptic Current Structure in “Stream coordinates” Reference Frames with an Example from the Antarctic Circumpolar Current. Deep Sea Research Part 1: Oceanographic Research Papers, 50(2), pp. 201-220. doi.org/10.1016/S0967-0637(02) 00168-1
11. Sposito G. (2001). Topological Groundwater Hydrodynamics. Advances in Water Resources, 24(7), pp. 793-801. doi.org/10.1016/S0309-1708(00)00077-4
12. Uchida H., Imawaki S., Hu J.-H. (1998). Comparisons of Kuroshio Surface Velocities Derived from Satellite Altimeter and Drifting Buoy Data. Journal of Oceanography, 54(1), pp. 115-122.
13. Pedlosky J. (1996). Ocean Circulation Theory. Berlin: Springer–Verlag.
14. Krishfield R. A., Plueddemann A. J., Honjo S. (2002). Technical Report WHOI-2002-09. Woods Hole Oceanographic Institution. Available at: http://www. whoi. edu/page.do?pid=31895 (Accessed: 01.04.2019).
15. Honjo S., Takizawa T., Krishfield R. et al. (1995). Drifting Buoys Make Discoveries About Interactive Processes in the Arctic Ocean. EOS Transcations. AGU, Vol. 76, 21, pp. 209-219.

Рус

Статью можно приобрести в электронном виде (PDF формат).

Стоимость статьи 350 руб. (в том числе НДС 18%). После оформления заказа, в течение нескольких дней, на указанный вами e-mail придут счет и квитанция для оплаты в банке.

После поступления денег на счет издательства, вам будет выслан электронный вариант статьи.

Для заказа скопируйте doi статьи:

10.14489/vkit.2019.05.pp.003-009

и заполните  форму 

Отправляя форму вы даете согласие на обработку персональных данных.

.

 

Eng

This article  is available in electronic format (PDF).

The cost of a single article is 350 rubles. (including VAT 18%). After you place an order within a few days, you will receive following documents to your specified e-mail: account on payment and receipt to pay in the bank.

After depositing your payment on our bank account we send you file of the article by e-mail.

To order articles please copy the article doi:

10.14489/vkit.2019.05.pp.003-009

and fill out the  form  

 

.

 

 

 
Поиск
Баннер
Баннер
Баннер
Журнал КОНТРОЛЬ. ДИАГНОСТИКА
Баннер
Rambler's Top100 Яндекс цитирования